Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 197
Filtrar
1.
Sci Rep ; 13(1): 14374, 2023 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-37658095

RESUMO

Alkaptonuria (AKU) is a rare autosomal recessive metabolic disorder caused by pathogenic variants in the homogentisate 1,2-dioxygenase (HGD) gene. This leads to a deficient HGD enzyme with the consequent accumulation of homogentisic acid (HGA) in different tissues causing complications in various organs, particularly in joints, heart valves and kidneys. The genetic basis of AKU in Egypt is completely unknown. We evaluated the clinical and genetic spectrum of six pediatric and adolescents AKU patients from four unrelated Egyptian families. All probands had a high level of HGA in urine by qualitative GC/MS before genetic confirmation by Sanger sequencing. Recruited AKU patients were four females and two males (median age 13 years). We identified four different pathogenic missense variants within HGD gene. Detected variants included a novel variant c.1079G > T;p.(Gly360Val) and three recurrent variants; c.1078G > C;p.(Gly360Arg), c.808G > A;p.(Gly270Arg) and c.473C > T;p.(Pro158Leu). All identified variants were properly segregating in the four families consistent with autosomal recessive inheritance. In this study, we reported the phenotypic and genotypic spectrum of alkaptonuria for the first time in Egypt. We further enriched the HGD-variant database with another novel pathogenic variant. The recent availability of nitisinone may promote the need for genetic confirmation at younger ages to start therapy earlier and prevent serious complications.


Assuntos
Alcaptonúria , Dioxigenases , Adolescente , Feminino , Masculino , Humanos , Criança , Alcaptonúria/genética , Egito , Homogentisato 1,2-Dioxigenase/genética , Fenilacetatos , Ácido Homogentísico
2.
J Inherit Metab Dis ; 46(5): 916-930, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37395296

RESUMO

Until now, only a few studies have focused on the early onset of symptoms of alkaptonuria (AKU) in the pediatric population. This prospective, longitudinal study is a comprehensive approach to the assessment of children with recognized AKU during childhood. The study includes data from 32 visits of 13 patients (five males, eight females; age 4-17 years) with AKU. A clinical evaluation was performed with particular attention to eye, ear, and skin pigmentation, musculoskeletal complaints, magnetic resonance imaging (MRI), and ultrasound (US) imaging abnormalities. The cognitive functioning and adaptive abilities were examined. Molecular genetic analyses were performed. The most common symptoms observed were dark urine (13/13), followed by joint pain (6/13), and dark ear wax (6/13). In 4 of 13 patients the values obtained in the KOOS-child questionnaire were below the reference values. MRI and US did not show degenerative changes in knee cartilages. One child had nephrolithiasis. Almost half of the children with AKU (5/13) presented deficits in cognitive functioning and/or adaptive abilities. The most frequent HGD variants observed in the patients were c.481G>A (p.Gly161Arg) mutation and the c.240A>T (p.His80Gln) polymorphism. The newly described allele of the HGD gene (c.948G>T, p.Val316Phe) which is potentially pathogenic was identified.


Assuntos
Alcaptonúria , Criança , Masculino , Feminino , Humanos , Pré-Escolar , Adolescente , Alcaptonúria/diagnóstico , Alcaptonúria/genética , Alcaptonúria/patologia , Homogentisato 1,2-Dioxigenase/genética , Estudos Prospectivos , Estudos Longitudinais , Mutação
3.
Mol Genet Metab ; 139(3): 107628, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37354891

RESUMO

A 6-yr-old female orangutan presented with a history of dark urine that turned brown upon standing since birth. Repeated routine urinalysis and urine culture were unremarkable. Urine organic acid analysis showed elevation in homogentisic acid consistent with alkaptonuria. Sequence analysis identified a homozygous missense variant, c.1081G>A (p.Gly361Arg), of the homogentisate 1,2-dioxygenase (HGD) gene. Familial studies, molecular modeling, and comparison to human variant databases support this variant as the underlying cause of alkaptonuria in this orangutan. This is the first report of molecular confirmation of alkaptonuria in a nonhuman primate.


Assuntos
Alcaptonúria , Pongo abelii , Animais , Humanos , Feminino , Alcaptonúria/diagnóstico , Alcaptonúria/genética , Pongo abelii/genética , Ácido Homogentísico , Mutação de Sentido Incorreto , Homozigoto
4.
Molecules ; 28(6)2023 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-36985595

RESUMO

Alkaptonuria (AKU) is a rare genetic autosomal recessive disorder characterized by elevated serum levels of homogentisic acid (HGA). In this disease, tyrosine metabolism is interrupted because of the alterations in homogentisate dioxygenase (HGD) gene. The patient suffers from ochronosis, fractures, and tendon ruptures. To date, no medicine has been approved for the treatment of AKU. However, physiotherapy and strong painkillers are administered to help mitigate the condition. Recently, nitisinone, an FDA-approved drug for type 1 tyrosinemia, has been given to AKU patients in some countries and has shown encouraging results in reducing the disease progression. However, this drug is not the targeted treatment for AKU, and causes keratopathy. Therefore, the foremost aim of this study is the identification of potent and druggable inhibitors of AKU with no or minimal side effects by targeting 4-hydroxyphenylpyruvate dioxygenase. To achieve our goal, we have performed computational modelling using BioSolveIT suit. The library of ligands for molecular docking was acquired by fragment replacement of reference molecules by ReCore. Subsequently, the hits were screened on the basis of estimated affinities, and their pharmacokinetic properties were evaluated using SwissADME. Afterward, the interactions between target and ligands were investigated using Discovery Studio. Ultimately, compounds c and f were identified as potent inhibitors of 4-hydroxyphenylpyruvate dioxygenase.


Assuntos
4-Hidroxifenilpiruvato Dioxigenase , Alcaptonúria , Ocronose , Humanos , Alcaptonúria/tratamento farmacológico , Alcaptonúria/genética , Alcaptonúria/metabolismo , Simulação de Acoplamento Molecular , Ocronose/tratamento farmacológico , Ácido Homogentísico/metabolismo
5.
Curr Protein Pept Sci ; 24(5): 380-392, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36880186

RESUMO

Alkaptonuria (AKU), a rare genetic disorder, is characterized by the accumulation of homogentisic acid (HGA) in organs, which occurs because the homogentisate 1,2-dioxygenase (HGD) enzyme is not functional due to gene variants. Over time, HGA oxidation and accumulation cause the formation of the ochronotic pigment, a deposit that provokes tissue degeneration and organ malfunction. Here, we report a comprehensive review of the variants so far reported, the structural studies on the molecular consequences of protein stability and interaction, and molecular simulations for pharmacological chaperones as protein rescuers. Moreover, evidence accumulated so far in alkaptonuria research will be re-proposed as the bases for a precision medicine approach in a rare disease.


Assuntos
Alcaptonúria , Homogentisato 1,2-Dioxigenase , Humanos , Alcaptonúria/genética , Alcaptonúria/metabolismo , Dioxigenases/genética , Dioxigenases/metabolismo , Estudos de Associação Genética , Homogentisato 1,2-Dioxigenase/genética , Homogentisato 1,2-Dioxigenase/metabolismo , Ácido Homogentísico/metabolismo , Doenças Raras , Relação Estrutura-Atividade
6.
Eur J Hum Genet ; 31(4): 485-489, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-35110678

RESUMO

Until recently, mainly DNA sequencing has been used to identify variants within the gene coding for homogentisate dioxygenase (HGD, 3q13.33) that cause alkaptonuria (AKU), an autosomal recessive inborn error of metabolism of tyrosine. In order to identify possible larger genomic deletions we have developed a novel Multiplex Ligation-dependent Probe Amplification (MLPA) assay specific for this gene (HGD-MLPA) and tested it successfully in healthy controls and in patients carrying two known previously identified HGD deletions. Subsequently, we analysed 22 AKU patients in whom only one or none classical HGD variant was found by sequencing. Using HGD-MLPA and sequencing, we identified four larger deletions encompassing from 1 to 4 exons of this gene and we defined their exact breakpoints: deletion of exons 1-4 (c.1-8460_282 + 6727del), deletion of exons 5 and 6 (c.283-9199_434 + 1688del), deletion of exon 11 (c.775-1915_879 + 1293del), and deletion of exon 13 (c.1007-1709_1188 + 1121del). We suggest including MLPA in the DNA diagnostic protocols for AKU in cases where DNA sequencing does not lead to identification of both HGD variants.


Assuntos
Alcaptonúria , Humanos , Alcaptonúria/diagnóstico , Alcaptonúria/genética , Reação em Cadeia da Polimerase Multiplex , Homogentisato 1,2-Dioxigenase/genética , Genômica , Sequência de Bases
7.
Int J Mol Sci ; 23(24)2022 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-36555443

RESUMO

Alkaptonuria (AKU) is an ultra-rare metabolic disease caused by the accumulation of homogentisic acid (HGA), an intermediate product of phenylalanine and tyrosine degradation. AKU patients carry variants within the gene coding for homogentisate-1,2-dioxygenase (HGD), which are responsible for reducing the enzyme catalytic activity and the consequent accumulation of HGA and formation of a dark pigment called the ochronotic pigment. In individuals with alkaptonuria, ochronotic pigmentation of connective tissues occurs, leading to inflammation, degeneration, and eventually osteoarthritis. The molecular mechanisms underlying the multisystemic development of the disease severity are still not fully understood and are mostly limited to the metabolic pathway segment involving HGA. In this view, untargeted metabolomics of biofluids in metabolic diseases allows the direct investigation of molecular species involved in pathways alterations and their interplay. Here, we present the untargeted metabolomics study of AKU through the nuclear magnetic resonance of urine from a cohort of Italian patients; the study aims to unravel molecular species and mechanisms underlying the AKU metabolic disorder. Dysregulation of metabolic pathways other than the HGD route and new potential biomarkers beyond homogentisate are suggested, contributing to a more comprehensive molecular signature definition for AKU and the development of future adjuvant treatment.


Assuntos
Alcaptonúria , Dioxigenases , Humanos , Alcaptonúria/genética , Metabolômica , Ácido Homogentísico/metabolismo , Biomarcadores , Espectroscopia de Ressonância Magnética
8.
Sci Rep ; 12(1): 19452, 2022 11 14.
Artigo em Inglês | MEDLINE | ID: mdl-36376482

RESUMO

Alkaptonuria (AKU) is a rare inborn error of metabolism caused by a defective homogentisate 1,2-dioxygenase (HGD), an enzyme involved in the tyrosine degradation pathway. Loss of HGD function leads to the accumulation of homogentisic acid (HGA) in connective body tissues in a process called ochronosis, which results on the long term in an early-onset and severe osteoarthropathy. HGD's quaternary structure is known to be easily disrupted by missense mutations, which makes them an interesting target for novel treatment strategies that aim to rescue enzyme activity. However, only prediction models are available providing information on a structural basis. Therefore, an E. coli based whole-cell screening was developed to evaluate HGD missense variants in 96-well microtiter plates. The screening principle is based on HGD's ability to convert the oxidation sensitive HGA into maleylacetoacetate. More precisely, catalytic activity could be deduced from pyomelanin absorbance measurements, derived from the auto-oxidation of remaining HGA. Optimized screening conditions comprised several E. coli expression strains, varied expression temperatures and varied substrate concentrations. In addition, plate uniformity, signal variability and spatial uniformity were investigated and optimized. Finally, eight HGD missense variants were generated via site-directed mutagenesis and evaluated with the developed high-throughput screening (HTS) assay. For the HTS assay, quality parameters passed the minimum acceptance criterion for Z' values > 0.4 and single window values > 2. We found that activity percentages versus wildtype HGD were 70.37 ± 3.08% (for M368V), 68.78 ± 6.40% (for E42A), 58.15 ± 1.16% (for A122V), 69.07 ± 2.26% (for Y62C), 35.26 ± 1.90% (for G161R), 35.86 ± 1.14% (for P230S), 23.43 ± 4.63% (for G115R) and 19.57 ± 11.00% (for G361R). To conclude, a robust, simple, and cost-effective HTS system was developed to reliably evaluate and distinguish human HGD missense variants by their HGA consumption ability. This HGA quantification assay may lay the foundation for the development of novel treatment strategies for missense variants in AKU.


Assuntos
Alcaptonúria , Dioxigenases , Humanos , Alcaptonúria/genética , Homogentisato 1,2-Dioxigenase/genética , Dioxigenases/genética , Polimorfismo de Nucleotídeo Único , Ensaios de Triagem em Larga Escala , Escherichia coli/genética , Escherichia coli/metabolismo , Ácido Homogentísico
9.
J Pediatr Endocrinol Metab ; 35(7): 913-923, 2022 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-35671204

RESUMO

OBJECTIVES: Alkaptonuria is a rare autosomal recessive genetic disorder resulting from the deficiency of homogentisate 1,2 dioxygenase (HGD), the third enzyme in the tyrosine degradation pathway. Homogentisic acid produced in excess oxidizes into ochronotic pigment polymer. Accumulation of this pigment in various tissues leads to systemic disease. METHODS: Clinical, laboratory, molecular findings and treatment characteristics of 35 patients followed up in Ege University Pediatric Nutrition, and Metabolism Department with the diagnosis of alkaptonuria were evaluated retrospectively. RESULTS: Twenty-four males (68.57%) and 11 females (31.42%) with a confirmed diagnosis of alkaptonuria from 32 different families were included in the study. We identified 11 different genetic variants; six of these were novel. c.1033C>T, c.676G>A, c.664G>A, c.731_734del, c.1009G>T, c.859_862delins ATAC were not previously reported in the literature. 24 (68.57%) patients only adhered to a low-protein diet in our study group. Seven (20%) patients initiated a low protein diet and NTBC therapy. Mean urinary HGA decreased by 88.7% with nitisinone. No statistical changes were detected in urinary HGA excretion with the low protein diet group. CONCLUSIONS: In our study, alkaptonuria patients were diagnosed at different ages, from infancy to adulthood, and progressed with other systemic involvement in the follow-up. Since the initial period is asymptomatic, giving potentially effective treatment from an early age is under discussion. Raising disease awareness is very important in reducing disease mortality and morbidity rates.


Assuntos
Alcaptonúria , Adulto , Alcaptonúria/diagnóstico , Alcaptonúria/epidemiologia , Alcaptonúria/genética , Criança , Feminino , Seguimentos , Homogentisato 1,2-Dioxigenase/genética , Homogentisato 1,2-Dioxigenase/metabolismo , Ácido Homogentísico/metabolismo , Humanos , Masculino , Estudos Retrospectivos , Tirosina
10.
Clin Chim Acta ; 532: 164-171, 2022 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-35550814

RESUMO

BACKGROUND: Alkaptonuria (AKU) is a rare tyrosine metabolism disorder caused by homogentisate 1,2-dioxygenase (HGD) mutations and homogentisic acid (HGA) accumulation. In this study, we investigated the genotype-phenotype relationship in AKU patients with a novel HGD gene mutation from a Chinese Hani family. METHODS: Routine clinical examination and laboratory evaluation were performed, urine alkalinization test and urinary gas chromatography-mass spectrometry were used to assess HGA. Gene sequencing was utilized to study the defining features of AKU. NetGene2-2.42 and BDGP software was used to predict protein structure online. Flow cytometry and RT-PCR were used to analyze HGD proteins and HGD mRNA, respectively. RESULTS: Two pediatric patients fulfilled diagnostic criteria for AKU with eddish-brown or black diapers and urine HGA testing. Sequencing testing revealed that all members of this family had a novel samesense mutation c.15G > A at the edge of exon 1 of the HGD. By flow cytometry, the expression of HGD protein in the pediatric patients' peripheral blood mononuclear cells was barely expressed. NetGene2-2.42 and BDGP software showed that the mutation reduced the score of the 5' splice donor site and disrupted its normal splicing, and the RT-PCR product also demonstrated that the defect in the HGD protein was due to the lack of the first exon containing the start codon ATG after the mutation. CONCLUSIONS: The novel mutation c.15G > A in HGD is associated with the AKU phenotype. It may affect the splicing of exon 1, leading to exon skipping, which impairs the structure and function of the protein.


Assuntos
Alcaptonúria , Dioxigenases , Alcaptonúria/diagnóstico , Alcaptonúria/genética , Criança , China , Dioxigenases/genética , Homogentisato 1,2-Dioxigenase/genética , Humanos , Leucócitos Mononucleares , Mutação
11.
Eur J Hum Genet ; 30(2): 237-242, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34504318

RESUMO

Alkaptonuria is characterized by the accumulation of homogentisic acid (HGA), part of which is excreted in the urine but the excess HGA forms a dark brown ochronotic pigment that deposits in the connective tissue (ochronosis), eventually leading to early-onset severe arthropathy. We analyzed a cohort of 48 Russian AKU families by sequencing all 14 exons (including flanking intronic sequences) of the homogentisate 1,2-dioxygenase gene (HGD) and Multiplex Ligation-dependent Probe Amplification (MLPA) analysis. Nine novel likely pathogenic HGD variants were identified, which have not been reported previously in any other country. Recently, Bychkov et al. [1] reported on the variant spectrum in another cohort of 49 Russian AKU patients. Here we summarize complete data from both cohorts that include 82 Russian AKU families. Taken together, 31 different HGD variants were found in these patients, of which 14 are novel and found only in Russia. The most common variant was c.481G>A (p.(Gly161Arg)), present in almost 54% of all AKU alleles.


Assuntos
Alcaptonúria , Artropatias , Ocronose , Alcaptonúria/diagnóstico , Alcaptonúria/epidemiologia , Alcaptonúria/genética , Éxons , Homogentisato 1,2-Dioxigenase/genética , Ácido Homogentísico/urina , Humanos , Artropatias/genética , Ocronose/epidemiologia , Ocronose/genética
12.
Sci Rep ; 11(1): 22562, 2021 11 19.
Artigo em Inglês | MEDLINE | ID: mdl-34799606

RESUMO

Alkaptonuria (AKU), a rare genetic disorder, is characterized by the accumulation of homogentisic acid (HGA) in organs due to a deficiency in functional levels of the enzyme homogentisate 1,2-dioxygenase (HGD), required for the breakdown of HGA, because of mutations in the HGD gene. Over time, HGA accumulation causes the formation of the ochronotic pigment, a dark deposit that leads to tissue degeneration and organ malfunction. Such behaviour can be observed also in vitro for HGA solutions or HGA-containing biofluids (e.g. urine from AKU patients) upon alkalinisation, although a comparison at the molecular level between the laboratory and the physiological conditions is lacking. Indeed, independently from the conditions, such process is usually explained with the formation of 1,4-benzoquinone acetic acid (BQA) as the product of HGA chemical oxidation, mostly based on structural similarity between HGA and hydroquinone that is known to be oxidized to the corresponding para-benzoquinone. To test such correlation, a comprehensive, comparative investigation on HGA and BQA chemical behaviours was carried out by a combined approach of spectroscopic techniques (UV spectrometry, Nuclear Magnetic Resonance, Electron Paramagnetic Resonance, Dynamic Light Scattering) under acid/base titration both in solution and in biofluids. New insights on the process leading from HGA to ochronotic pigment have been obtained, spotting out the central role of radical species as intermediates not reported so far. Such evidence opens the way for molecular investigation of HGA fate in cells and tissue aiming to find new targets for Alkaptonuria therapy.


Assuntos
Acetatos/urina , Alcaptonúria/urina , Benzoquinonas/urina , Homogentisato 1,2-Dioxigenase/metabolismo , Ácido Homogentísico/urina , Ocronose/metabolismo , Ocronose/urina , Adulto , Idoso , Alcaptonúria/enzimologia , Alcaptonúria/genética , Estudos de Casos e Controles , Difusão Dinâmica da Luz , Espectroscopia de Ressonância de Spin Eletrônica , Feminino , Homogentisato 1,2-Dioxigenase/genética , Humanos , Espectroscopia de Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Mutação , Ocronose/enzimologia , Ocronose/genética , Oxirredução , Espectrofotometria Ultravioleta , Urinálise
13.
Biomed Res Int ; 2021: 1515641, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34235214

RESUMO

BACKGROUND: Metabolic disorder alkaptonuria is an autosomal recessive disorder caused by mutations in the HGD gene, and a deficiency HGD enzyme activity results in an accumulation of homogentisic acid (HGA), ochronosis, and destruction of connective tissue. METHODS: We clinically evaluated 18 alkaptonuria patients (age range, 3 to 60 years) from four unrelated families. Furthermore, 11 out of 18 alkaptonuria patients and 7 unaffected members were enrolled for molecular investigations by utilizing Sanger sequencing to identify variants of the 14 exons of HGD gene. RESULTS: We found that the seven patients from the 4 unrelated families carried a recurrent pathogenic missense variant (c.365C>T, p. Ala122Val) in exon 6 of HGD gene. The variant was fully segregated with the disease in affected family members while the other unaffected family members were heterozygous carriers for this variant. Additionally, the clinical features were fully predicted with alkaptonuria disorder. CONCLUSION: In this study, we confirmed that the most common variants in Jordanian AKU patients was c.365C>T, p. Ala122Val in exon 6 of HGD gene. Additionally, we correlated the clinical and genetic features of AKU patients at various ages (3-60 years).


Assuntos
Alcaptonúria/genética , Saúde da Família , Efeito Fundador , Genes Recessivos , Homogentisato 1,2-Dioxigenase/genética , Ocronose/genética , Adolescente , Adulto , Criança , Pré-Escolar , Éxons , Feminino , Variação Genética , Heterozigoto , Ácido Homogentísico/metabolismo , Humanos , Jordânia , Masculino , Pessoa de Meia-Idade , Mutação de Sentido Incorreto , Oligonucleotídeos , Linhagem , Análise de Sequência de DNA , Adulto Jovem
14.
Am J Med Genet A ; 185(11): 3350-3358, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34165242

RESUMO

From Sir Archibald Garrod's initial description of the tetrad of albinism, alkaptonuria, cystinuria, and pentosuria to today, the field of medicine dedicated to inborn errors of metabolism has evolved from disease identification and mechanistic discovery to the development of therapies designed to subvert biochemical defects. In this review, we highlight major milestones in the treatment and diagnosis of inborn errors of metabolism, starting with dietary therapy for phenylketonuria in the 1950s and 1960s, and ending with current approaches in genetic manipulation.


Assuntos
Albinismo/terapia , Alcaptonúria/terapia , Cistinúria/terapia , Erros Inatos do Metabolismo/terapia , Albinismo/genética , Albinismo/metabolismo , Albinismo/patologia , Alcaptonúria/genética , Alcaptonúria/metabolismo , Alcaptonúria/patologia , Erros Inatos do Metabolismo dos Carboidratos/genética , Erros Inatos do Metabolismo dos Carboidratos/metabolismo , Erros Inatos do Metabolismo dos Carboidratos/patologia , Erros Inatos do Metabolismo dos Carboidratos/terapia , Cistinúria/genética , Cistinúria/metabolismo , Cistinúria/patologia , Humanos , Erros Inatos do Metabolismo/genética , Erros Inatos do Metabolismo/metabolismo , Erros Inatos do Metabolismo/patologia , Fenilcetonúrias/genética , Fenilcetonúrias/metabolismo , Fenilcetonúrias/patologia , Fenilcetonúrias/terapia , Desidrogenase do Álcool de Açúcar/deficiência , Desidrogenase do Álcool de Açúcar/genética , Desidrogenase do Álcool de Açúcar/metabolismo , Xilulose/genética , Xilulose/metabolismo
15.
Eur J Med Genet ; 64(5): 104197, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33746036

RESUMO

Alkaptonuria (AKU) is an inborn error of metabolism caused by the deficiency of homogentisate 1,2-dioxygenase (HGD) as a result of a defect in the HGD gene. HGD enzyme deficiency results in accumulation of homogentisic acid (HGA) in the body, which in turn leads to multisystemic clinical symptoms. The present study aimed to investigate the presenting symptoms, age at diagnosis, and clinical and genetic characteristics of AKU patients followed-up in different centers in Turkey. In this cross-sectional, multicenter, descriptive study, medical records of 66 AKU patients were retrospectively evaluated. Patients' data regarding demographic, clinical and genetic characteristics were recorded. HGD database (http://hgddatabase.cvtisr.sk/) was used to identify HGD gene variants. Of the patients, 37 (56.1%) presented with isolated dark urine and 29 (43.9%) were diagnosed based on the clinical symptoms or family screening. One of these patients was on follow-up for 2 years due to Parkinsonism and was diagnosed with AKU on further analyses. Signs of ochronosis such as joint pain, low back pain and renal stones developed in childhood in 7 patients. Eight patients were diagnosed with depression via psychiatric evaluation. There were 14 (21.2%) patients operated on for ochronosis. The most frequent mutation observed in the patients was c.175delA, which was followed by c.674G > A and c.1007-2A > T mutations. Four novel mutations (c.189G > A, c.549+1G > T, c.1188+1G > A, and c.334 T > G) were identified in the patients included in the study. In addition to the known signs such as dark urine and skin pigmentation, symptoms involving different systems such as neurological findings and depression can also be encountered in AKU patients. The presence of a change in urine color needs to be questioned in patients presenting with different symptoms such as arthralgia/arthritis, renal stones or low-back pain, particularly in childhood, when skin ochronosis is not pronounced, and further examination should be performed.


Assuntos
Alcaptonúria/genética , Homogentisato 1,2-Dioxigenase/genética , Fenótipo , Adolescente , Adulto , Alcaptonúria/diagnóstico , Alcaptonúria/epidemiologia , Criança , Pré-Escolar , Depressão/epidemiologia , Diagnóstico Diferencial , Diagnóstico Precoce , Feminino , Humanos , Lactente , Cálculos Renais/epidemiologia , Masculino , Pessoa de Meia-Idade , Mutação , Ocronose/epidemiologia , Turquia
16.
Anal Chem ; 93(10): 4521-4527, 2021 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-33655752

RESUMO

Clinicians require simple quantitative tools for the detection of homogentisic acid in alkaptonuria patients, a rare inherited disorder of amino acid metabolism. In this study, we report a whole-cell biosensor for homogentisic acid to detect alkaptonuria disease through the expression of green fluorescence protein. The assay system utilizes a promoter sequence (hmgA) isolated from the Pseudomonas aeruginosa genome. To increase the sensitivity, the sensor module harboring phmgA::GFP was further transformed into various transposon mutants debilitated in steps involved in the metabolism of phenylalanine and tyrosine via homogentisic acid as a central intermediate. The proposed biosensor was further checked for analytical features such as sensitivity, selectivity, linearity, and precision for the quantification of homogentisic acid in spiked urine samples. The limit of detection for the developed biosensor was calculated to be 3.9 µM, which is comparable to that of the various analytical techniques currently in use. The sensor construct showed no interference from all of the amino acids and its homolog molecules. The accuracy and precision of the proposed biosensor were validated using high-performance liquid chromatography (HPLC) with satisfactory results.


Assuntos
Alcaptonúria , Técnicas Biossensoriais , Alcaptonúria/diagnóstico , Alcaptonúria/genética , Cromatografia Líquida de Alta Pressão , Ácido Homogentísico , Humanos , Tirosina
17.
Eur J Med Genet ; 64(4): 104165, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33621656

RESUMO

Alkaptonuria is a rare genetic disease caused by mutations in HGD gene. Here we report the results of genetic and biochemical analysis of 49 Russian patients with alkaptonuria. One of the common variants c.481G > A; p.(Gly161Arg) comprising 72.4% of identified alleles was found in 45 of 49 patients in our cohort, which is probably the highest frequency of this variant worldwide. 9 novel variants were found: 6 missense, 2 splicing and 1 loss of start-codon. For missense variants we performed bioinformatic analysis, protein 3D-modeling and molecular dynamics simulations, which strongly suggest their pathogenic effect. For the rare synonymous variant c.753C > T; p.(Gly251Gly), which was found in 3 cases and predicted to activate cryptic splice site, we performed the detailed functional analysis on patient's cDNA and minigene assay and confirmed its pathogenicity.


Assuntos
Alcaptonúria/genética , Homogentisato 1,2-Dioxigenase/genética , Mutação , Frequência do Gene , Células Hep G2 , Homogentisato 1,2-Dioxigenase/química , Homogentisato 1,2-Dioxigenase/metabolismo , Humanos , Simulação de Dinâmica Molecular , Sítios de Splice de RNA
18.
Brief Bioinform ; 22(5)2021 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-33538294

RESUMO

Alkaptonuria (AKU, OMIM: 203500) is an autosomal recessive disorder caused by mutations in the Homogentisate 1,2-dioxygenase (HGD) gene. A lack of standardized data, information and methodologies to assess disease severity and progression represents a common complication in ultra-rare disorders like AKU. This is the reason why we developed a comprehensive tool, called ApreciseKUre, able to collect AKU patients deriving data, to analyse the complex network among genotypic and phenotypic information and to get new insight in such multi-systemic disease. By taking advantage of the dataset, containing the highest number of AKU patient ever considered, it is possible to apply more sophisticated computational methods (such as machine learning) to achieve a first AKU patient stratification based on phenotypic and genotypic data in a typical precision medicine perspective. Thanks to our sufficiently populated and organized dataset, it is possible, for the first time, to extensively explore the phenotype-genotype relationships unknown so far. This proof of principle study for rare diseases confirms the importance of a dedicated database, allowing data management and analysis and can be used to tailor treatments for every patient in a more effective way.


Assuntos
Alcaptonúria/genética , Bases de Dados Genéticas , Genótipo , Aprendizado de Máquina , Seleção de Pacientes , Medicina de Precisão , Alcaptonúria/enzimologia , Feminino , Homogentisato 1,2-Dioxigenase/genética , Humanos , Masculino , Mutação , Doenças Raras
19.
BMJ Case Rep ; 14(2)2021 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-33541951

RESUMO

Alkaptonuria is a rare genetic disorder resulting in abnormality of tyrosine metabolism. It is one of the Garrod's tetrad of 'inborn errors of metabolism' proposed to have Mendelian recessive inheritance. The disorder is characterised by deposition of homogentisic acid leading to ochronosis and ochronotic osteoarthropathy; however, blackish discoloration of urine is the only childhood manifestation. Other manifestations present only after third decade. A 13-year-old boy presented to paediatric nephrology clinic with blackish discolouration of urine since infancy. Examination revealed bluish black discolouration of bilateral sclera and ear cartilage; however, he had no symptoms of ochronotic osteoarthropathy. Genetic test pointed towards alkaptonuria. Currently, he is on regular follow-up and is being treated with vitamin C to delay the progression of the disease. Early diagnosis with appropriate intervention delays the onset of complications and preserves the quality of life of the patient.


Assuntos
Alcaptonúria/diagnóstico , Antioxidantes/administração & dosagem , Ácido Ascórbico/administração & dosagem , Diagnóstico Precoce , Ocronose/complicações , Adolescente , Alcaptonúria/genética , Progressão da Doença , Humanos , Masculino , Esclera
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...